An inverse method to determine the mechanical properties of the iris in vivo
نویسندگان
چکیده
BACKGROUND Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. MATERIAL AND METHODS Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. RESULTS Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. CONCLUSION Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment.
منابع مشابه
Estimating the unknown heat flux on the wall of a heat exchanger internal tube using inverse method
In the design of heat exchangers, it is necessary to determine the heat transfer rate between hot and cold fluids in order to calculate the overall heat transfer coefficient and the heat exchanger efficiency. Heat transfer rate can be determined by inverse methods. In this study, the unknown space-time dependent heat flux imposed on the wall of a heat exchanger internal tube is estimated by app...
متن کاملتخمین غیرتهاجمی مدول الاستیک چشم کاتاراکته شده خرگوش
Although cataract is very common and its detection seems apparently easy especially in the mature cataract, its quantitative description to determine the critical value of diagnosis is too difficult. Non-invasive evaluation of the mechanical properties of eye is hampered by the absence of in-vivo methods for direct assessment of the axial length of eye, lens and cornea. In the present study...
متن کاملA Statistical Analysis of the Mechanical Properties of the Beam 14 in Lines 630 and 650 of Iran National Steel Industrial Group
Structural steel sections are mainly used in beams and columns of building frames. Iran National Steel IndustrialGroup is among the oldest and largest producers of beams in Iran. It has two beam production lines, namely Line630 and Line 650. In this study, the mechanical properties of manufactured beams in these production lines werecompared. Based on the t-test results, the e...
متن کاملInitial blank design of deep drawn orthotropic materials using inverse finite element method
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations between material points of initial blank and final shape, an equation system was obt...
متن کاملAn Analytical Solution for Inverse Determination of Residual Stress Field
An analytical solution is presented that reconstructs residual stress field from limited and incomplete data. The inverse problem of reconstructing residual stresses is solved using an appropriate form of the airy stress function. This function is chosen to satisfy the stress equilibrium equations together with the boundary conditions for a domain within a convex polygon. The analytical solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014